Existence Results for a Second-order Difference Equation with Summation Boundary Conditions at Resonance
نویسندگان
چکیده
In this paper, we study the existence of solutions of a second-order difference equation with summation boundary value problem at resonance by using intermediate value theorems and Schaefer’s fixed point theorem, we obtain a sufficient condition for the existence of the solution for the problem.
منابع مشابه
Order-type existence theorem for second order nonlocal problems at resonance
This paper gives an abstract order-type existence theorem for second order nonlocal boundary value problems at resonance and obtain existence criteria for at least two positive solutions, where $f$ is a continuous function. Our results generalize or extend related results in the literature and give a positive answer to the question raised in the literature. An example is given to illustr...
متن کاملNonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملNonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution
This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کامل